Lipschitz-Free Spaces Over Ultrametric Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitz - free Banach spaces

We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y , then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipsch...

متن کامل

Minimal bi-Lipschitz embedding dimension of ultrametric spaces

We prove that an ultrametric space can be bi-Lipschitz embedded in R if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.

متن کامل

Lipschitz and uniformly continuous Reducibilities on Ultrametric polish spaces

We analyze the reducibilities induced by, respectively, uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and determine whether under suitable set-theoretical assumptions the induced degree-structures are well-behaved.

متن کامل

Approximation and Schur Properties for Lipschitz Free Spaces over Compact Metric Spaces

We prove that for any separable Banach space X, there exists a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space contains a complemented subspace isomorphic to X. As a consequence we give an example of a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space fails the approximation property and we prove that ther...

متن کامل

Indivisible Ultrametric Spaces

Ametric space is indivisible if for any partition of it into finitely many pieces one piece contains an isometric copy of the whole space. Continuing our investigation of indivisible metric spaces [1], we show that a countable ultrametric space embeds isometrically into an indivisible ultrametric metric space if and only if it does not contain a strictly increasing sequence of balls.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2015

ISSN: 1660-5446,1660-5454

DOI: 10.1007/s00009-015-0566-7